On the topology of isoparametric hypersurfaces with four distinct principal curvatures

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Principal Curvatures of Isoparametric Hypersurfaces in Cp

Let M be an isoparametric hypersurface in CPn, and M the inverse image of M under the Hopf map. By using the relationship between the eigenvalues of the shape operators of M and M , we prove that M is homogeneous if and only if either g or l is constant, where g is the number of distinct principal curvatures of M and l is the number of non-horizontal eigenspaces of the shape operator on M .

متن کامل

A Note on the Paper ”isoparametric Hypersurfaces with Four Principal Curvatures”

In [6], employing commutative algebra, we showed that if the number of principal curvatures is 4 and if the multiplicities m1 and m2 of the principal curvatures satisfy m2 ≥ 2m1 − 1, then the isoparametric hypersurface is of the type constructed by Ozeki-Takeuchi and Ferus-Karcher-Münzner [18], [11]. This leaves only four multiplicity pairs (m1, m2) = (3, 4), (4, 5), (6, 9) and (7, 8) unsettled...

متن کامل

$L_1$-Biharmonic Hypersurfaces in Euclidean Spaces with Three Distinct Principal Curvatures

Chen's biharmonic conjecture is well-known and stays open: The only biharmonic submanifolds of Euclidean spaces are the minimal ones. In this paper, we consider an advanced version of the conjecture, replacing $Delta$ by its extension, $L_1$-operator ($L_1$-conjecture). The $L_1$-conjecture states that any $L_1$-biharmonic Euclidean hypersurface is 1-minimal. We prove that the $L_1$-conje...

متن کامل

Rigidity of minimal hypersurfaces of spheres with two principal curvatures

Let ν be a unit normal vector field along M . Notice that ν : M −→ S satisfies that 〈ν(m),m〉 = 0. For any tangent vector v ∈ TmM , m ∈ M , the shape operator A is given by A(v) = −∇̄vν, where ∇̄ denotes the Levi Civita connection in S. For every m ∈ M , A(m) defines a linear symmetric transformation from TmM to TmM ; the eigenvalues of this transformation are known as the principal curvatures of ...

متن کامل

Real Hypersurfaces with Constant Principal Curvatures in Complex Hyperbolic Spaces

We present the classification of all real hypersurfaces in complex hyperbolic space CHn, n ≥ 3, with three distinct constant principal curvatures.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1999

ISSN: 0002-9939,1088-6826

DOI: 10.1090/s0002-9939-99-04490-1